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RSL Technical Report

A Numerical Procedure for Recovering True Scattering

Coefficients from Measurements with Wide-Beam Antennas

Qinglin wang and Sivaprasad Gogineni

Radar Systems and Remote Sensing Laboratory

University of Kansas, Lawrence, KS 66045

Abstract This report presents a numerical procedure for estimating the true scattering

coefficient, tr °, from measurements made using wide-beam antennas. The use of wide-beam

antennas results in an inaccurate estimate of tr° if the narrow-beam approximation is used in the

retrieval process for tr°. To reduce this error, we propose a correction procedure that estimates

the error resulted from the narrow-beam approximation and uses the error to obtain a more

accurate estimate of cr°. An exponential model has been assumed to take into account the

variation of tr ° with incidence angles, and the model parameters are estimated from measured

data. Based on the model and knowledge of the antenna pattern, the procedure calculates the

error due to the narrow-beam approximation. The procedure is shown to provide a significant

improvement in estimation of tr° obtained with wide-beam antennas. The proposed procedure is

also shown insensitive to the assumed tr° model.



1. In_oducdon

Scatterometers, calibrated radar systems, are designed to estimate, accurately and precisely, the

backscattering coefficient cr° of homogeneous targets from the received power. Because the

backscattered signal is the superposition of all scatterers illuminated by the antenna beam, the

implicit assumptions of this retrieval procedure are that those illuminated scatterers have the

same property as far as backscattering is concemed, and the radar system has the same response

to all the backscattered components. Practically, these assumptions are approximately valid only

when a narrow-beam antenna is used in the measurement, and common retrieval procedures are

based on so-called narrow-beam approximation, which will be explained in following discussion.

For a monostatic radar, the received power from a distributed target is, mathematically, related to

cr° by an integral equation, the radar equation, as expressed by eq. (1)

P, X2Go2 g2(ao, #., e)
P,.(e) = (4n.)3 f o'°(O°, #,,) dA (1)R4(o., #°)

A

where

Pt = transmitted power

X = wavelength

Go = maximum gain of antenna

g2 = normalized two-way antenna gain function

o"° = scattering coefficient of the_arget .......

R = range between antenna and target

0 = incidence angle of EM waves (see Fig. 1),

The radar illumination geometry is illustrated in Fig.l. Notice that o"°, g2, and R are the

functions of radar coordinates (0,,, #,,), and the integration is carried out over the illuminated area

A. The received power P, is a fimction of incidence angle e, as indicated in (1).

Our objective is to retrieve o'°(0) from P,.(O) based on (1), and assumptions are made to facilitate

the retrieval procedure. One of these assumptions is the narrow-beam approximation, which

states that, ff the antenna beam is sufficiently narrow, o"°, g2, and R can be considered

approximately as constants over the illuminated area A. Under the narrow-beam approximation,

variables cr°, g2, and R in (1) are replaced by their representative values evaluated at incidence
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angle 0, and (I) can be simplified as

P,A2G2oo°(O)

P,(o)= (4zr)3R4(0) Aiu(e) (2)

AiH(O)= f dA isthe "effectively"/llun'_atedarea.A common practiceis to definewhere

A

Aat(O)asthe areaof theeffectiveantenna beamwidth interceptedby the targetplane.For a pencil

beam, the interceptedareaisan ellipse.Using (2),o"°can be retrievedfrom measured data,radar

parameters and geometry,

oo(o)_- P,(o)(4'r)3R4(a)
P_A2G2oAat(O)

(3)

Equation(3) gives so-called measured a ° (denoted as <yo), which is calculated under the narrow-

beam approximation. Using (1), (2) and (3), o.°(0) can be related to true o°(0) as

oO(o)= ao(o)_ _ g2(o°,¢°,e)oO(o°,¢.,e)dA
Aiu(O) _ R4(Oa, _°, O)

(4)

where

R(O°, ¢°)
R(O°, _°, O) = , normalized range

R(O)

u°(o°, ¢°, o) =
o°(o°, ¢°)

, normalized scattering coefficient
o°(0)

g2(O°, 0°, 0), normalized two-way antenna pattern as in (1).

From (4) it can be seen that the o ° represents only an averaged value of the true o ° weighted by

the normalized antenna pattern and range. However, the condition of the narrow-beam

approximation ensures that the integrand of (4) is approximately equal to one over the integration

area, and a °, the weighted average of cr°, is close to the true cr° at incidence angle 0.

Unfommately, wide-beam 1 antennas are often used in scatterometers for various reasons, and the
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narrow-beam approximation is then not a valid assumption. If eq. (3) is still used in the retrieval

process, o-.° could deviate from the true cr° by a large value. Ulaby et al. [1, pp. 755] briefly

discusses the effect of assuming constant cr° in the illumination integral. With a beamwidth of

10 °, the narrow-beam approximation could result in an error of several dBs in estimating cr° if

true cr° changes rapidly over the illuminated area.

Two examples of the effects of the narrow-beam approximation are shown in Fig.2. The

theoretical values of cr° of a smooth sea-ice surface at several angles are taken from [2, pp.

1754], and a smoothly fitted curve is generated from those data and extended to the entire

relevant range of incidence angles. The curve is used to calculate received power from (1) with a

pencil-beam antenna of Gaussian pattern. The calculated power is then used to calculate cr° from

(3), which is derived under the narrow-beam approximation. As a quantitative illustration, the

figure shows how large the narrow-beam approximation error could be if a wide-beam antenna is

used to measure cr° when it changes rapidly over the angular extent of the antenna beamwidth.

Because the cr° of targets with a smooth surface often exercises a sharp change for small

incidence angles, it is necessary to reduce the error to an acceptable extent if the narrow-beam

approximation condition is violated in the measurement. In other words, some correction is

needed on cr° to take into account the effect of average in (4), so that the requisite accuracy of

estimation is achieved even though wide-beam antennas are used.

In section 2, we discuss the possible solutions and propose our approach. In sections 3-5, we

describe the proposed procedure in detail. In section 6, we present two examples, and in section

7, we give a summary along with our conclusion.

1. In this report, an antenna is considered as "wide-beam" iftbe error in the estimate of a ° by eq. (3) is too large to
be accepted. Otherwise, it is narrow-beam. These terms really involve three factors: antenna beamwidth,
variation of cr°, and error tolerance in estimating _r°.
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2. Correction of the Narrow-beam Approximation Error

Given received power {Pr(Ok)} measured at incidence angles {Ok}, we try to estimate true

or°(0,) even though the narrow-beam approximation may be violated. The difficulty of the

problem is that, without the narrow-beam approximation, it involves an integral equation (see

(I)). Observing (1), we can consider the function g2(Oo, 0,, O)/R4(Oo, _0) in the integrand as a

two-dimensional spatial filter. The two-dimensional convolution, as represented by (1), states

that the input to the filter is the true cr°, and the output of the filter is the power received by the

antenna (notice that output is one-dimensional, or can be thought as having rotational symmetry).

We want to find the input signal of the filter from the output, a deconvolution problem.

For a general two-dimensional deconvolution problem, an inverse filter can be structured to

retrieve the input signal based on output data as well as characteristics of the filter and the

measurement noise [3, pp. 61]. However, in our case the facts that the measurements are

generally made over a small set of incidence angles and that the filter is space variant make the

use of inverse filters questionable.

Axline [4] developed a matrix inversion procedure to invert the integral equation. One drawback

of this method is that it needs Pr(Ok) to be measured with small angular increments. If a

theoretical or empirical model can be used to describe o °, it is possible to develop algorithms to

estimate the parameters of the assumed model [5][6].

Another approach for attacking the problem is, instead of solving the integral equation (1)

directly, trying to improve o °, the estimate based on the narrow-beam approximation, by adding

a correction term, in terms of clB, which represents the error due to the narrow-beam

approximation in the retrieval process. In the following discussion, we call the error term a

narrow-beam approximation error, and name this kind of approach a narrow-beam

approximation plus correction. The narrow-beam approximation error can be mathematically

defined as

E(OD = o°(Ok) - o°(Ok) (5)

A more accurate estimate of o° can be obtained by adding this error term to o °,
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_°(ek) = cr.°(ok)+ g(ok)

where/_(0_) is the estimate of E(ek) and all terms in (5) and (6) are in dB.

(6)

E(Ok) is unknown and eq. (5) cannot be used to calculate E(Ok) because o°(0k) is unknown.

However we can assume that true a ° belongs to (or is close to) a certain model and the model

parameters can be estimated from measured data. Once the model is determined, the narrow-

beam approximation error could be calculated via (4). The idea behind this approach is that what

we need is the error/_(0k), the difference between a°(Ok) and o°(Ok) in (4) due to the effect of

wide antenna beam, not the model itself, so an accurate model is not crucial as long as the error

can be estimated from the model with accepted accuracy. In this report, we propose a numerical

procedure to estimate the narrow-beam approximation error. Later we will see that the proposed

procedure is indeed insensitive to assumed model.

The approach of narrow-beam approximation plus correction has been used by several

researchers, e.g., Kim et al. [6] and Stiles et al. [7]. Kim et al. proposed an exponential model

and a recursive algorithm to estimate the model parameters. Stiles et al. described an empirical

formula, based on a group of hypothetical theoretical cr° curves, to calculate the error E(Oj,) for

small incidence angles. The proposed approach in this report is more general and systematic.

3. Exponential Model: A Piecewise-Linear Approximation

In order to estimate the narrow-beam approximation error via (4), a parameterized o ° model as

the function of incidence angle must be chosen. The choice of the model is based on the

following considerations:

a. It fits experimental data, at least approximately.

b. It facilitates mathematical handling.

c. It is robust; that is, deviation of true o ° from assumed model should not cause

unacceptable error.

Note that the purpose of introducing the model is to estimate the error resulting from the narrow-

beam approximation, so it is possible to obtain a good estimate of the error even though the

6



model itself may not accurately describe the true scattering characteristics of the target. 2

A reasonable model is the piecewise-exponential model

cr°(O)= Ai exp(-O /B 0 Or,_t< O < eL,, i= I,...,N (7)

Generally N = 2, and the interval (eL,_1, eta) can be identified by inspecting o ° or "optimum

fitting."

There are two reasons for choosing the exponential model. First, the exponential model has been

found to fit reasonably well experimental data from North American agricultural terrain, sea ice,

and ocean[l, pp. 577]. Second, the model is simple and the model parameters are easily

estimated from measured data. Particularly, the two model parameters, A_ and B_, are separable

so that a combined approach of a one-dimensional lookup table plus one-dimensional

optimization can be established to estimate the parameters, as proposed in this report.

Mathematically, the exponential model is nothing but a piecewise-linear approximation of the

true cr° in the log scale (riB). Therefore, we can expect a better model by dividing the covered

range into more segments, and each segment is modeled with distinct exponential parameters.

As mentioned earlier, what we are concerned with is the narrow-beam approximation error rather

than the model itself, and we will give an example to show that even if the true cr° deviates from

the model, the results of the procedure are still reasonably good.

As indicated in (7), the so-called exponential model here is actually a pieeewise-exponential

model, or piecewise-liner model in log scale; that is, the model consists of several segments and

each segment is modeled by a distinct exponential function. For most measured data, at least two

segments are needed, one covering small incidence angles and another for large angles. Here the

model is in contrast to the one used by Kim et al., who used one exponential function to cover all

the relevant incidence angles.

. The narrow-beam approximation error is defined in eq. (5), and the estimated error from the model is given by
eq. (18). Any modeling error will result in errors in a°c(0k) (estimate of o'°(Ok_) and in ¢r°(Ot) (estimate of

a.°(Ot)). However if the errors are positive correlated, they may cancel each other in the estimate of the narrow-
beam approximation error given by eq. (18)



4. Estimation of Model Parameter • Lookup Table Method

4.1 Calculated a °

0
With the chosen model, denoted as a,,, the so-called calculated o ° (denoted as o+°) can be

derived as (see (4))

aO(o,) = _)xP(°*)! g2(Oo._(o,.¢.)¢°' o) aO(o..¢. ) (8)

where Am(Ok) is the equivalent area as in (2).

As indicated by its name, o ° is obtained by numerically solving eq. (8). On the other hand, o ° is

calculated from measured Pr based on eq. (3). The integration in eq. (4), which relates o. ° to true

o °, is really embedded in the physical process of the measurement although (4) and (8) have

exactly the same form. Another difference between (4) and (8) is that o 0 in (4) is associated

0 is the parameterized model that we are tryingwith the measured target and is unknown, and a m

to fit to measured data in the hope that narrow-beam approximation errors regarding o ° and o °

are close to each other. It is very clear that all other quantities appearing in (8), including

antenna pattern and range, should represent the same quantities involved in the measurement

process. Though errors are inevitable in modeling these quantities, we ignore these errors in

following discussions. In other words, values of a ° are experimental data; and o °, on the other
0

hand, is only a mathematical expression that reflects the effect of the illumination integral on ore.

o a °, and o a0To avoid confusion, some words are needed here about o"°, o'm, o_. is the true

backscattering coefficient, which is never known and which we are trying to estimate, o ° is the

measured backscattering coefficient based on received power and the narrow-beam

approx_n_ti_ (see(3))i-it °actually includes aft effects 0fno_eand errors in the process of
o

measurement and calibration, o m is the estimate of cr° based on the assumed model and
o

estimated parameters. The last one, _+, the calculated backscattering coefficient, is given by (8),

and it reflects the illumination integral process in (1), which is ignored by the narrow-beam

approximation.
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One interesting point is that, even though we are trying to find the best fit of measured data
o

within the chosen model, we do not attempt to use or,, as a final estimate of cr°, but only use it to

find the narrow-beam approximation error. This is because we are not sure whether or not the

model (and/or the estimated parameters) is accurate. However we believe that the error estimate

obtained using the model is reasonably accurate for applying the correction procedure. Fig.3

gives a concise illustration of the above discussion. Next, we discuss the parameter estimation

procedure in detail.

4.2 Problem description

Comparing (4) with (8), we can see that or.° will equal o"° ff everything is a perfect match,
o

particularly between the parameterized model o',,, in (8) and true a °, and all other error sources

are ignored. Therefore, the difference between them can be used to assess the correctness of the

parameter estimation. The problem can be mathematically described as follows:

Given a measured vector or.° = (o'°(O0, ... , o'°(O,)) t, where superscript t means the transposed

vector, over a set of incidence angles {Oj }, we need to find the optimum model parameters Ao

and Bo that minimize the squared Euclidean distance between the two vectors, a ° and o"°,

defined by

D 2 = Ila.° - o_112

=

(9)

where o ° is the so-called calculated vector

a,.° = ( o°(o,,))'

whose components { cr°(O_) } are obtained from (8) with

o.°(e) = A exp(-0 / B)

In (9), the error is calculated in dB because cr° changes drastically with incidence angles. In

addition, some kind of weighting can be incorporated into the expression to emphasize part of

the measured data.

9
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4.3 Lookup table method

Various two-dimensional minimum-finding procedures can be used to find the minimum solution

of (9), but three factors must be taken into account:

a. Does the procedure converge each time?

b. Does it converge to the global minimum each time.'?

c. How fast does it converge?

It is not always easy to answer these questions. One way to get around the above difficulties is

the lookup table method. That is, calculate {o'+°(0i)} over possible ranges of paramr_eters A and B

and store the results in a table in advance. Then in the retrieval process, the optimum parameters

of the model can be obtained by simply comparing measured data _.0 with each entry of the table

and finding the one that has the smallest distance. Obviously the lookup table method can only

yield a sub-optimum solution in the sense that the parameters A and B must be quantized into

finite sets so that the minimum solution is "optimum" only as related to the chosen parameter

sets. The quantized error can be reduced by using a finer quantization step, or a larger-size table.

On the other hand, we have assumed that the proposed approach is not model-sensitive and we

are not claiming the exponential model always accurately represents the true o"°. That means the

narrow-beam approximation error cannot be very sensitive to the model parameters either, so

that the paraaneters A and B do not need to be quantized with very small steps. Otherwise, the

whole procedure is questionable. The incidence angle 0 must also be quantized into a finite set,

which is less problematic because measurements are generally taken over a set of pre-designed

incidence angles. Furthermore, interpolation techniques can be used if occasionally the measured

data have different a,_gles from those in the table. Another problem is the memory requirement

for storing the table. Totally there are Ne x N,t x Na values in the table where Ne, Na, and Na

are the sizes of quantized 0, A, and B respectively. This requirement may impose serious

problems in practice.

One reason for us to choose the exponential model is its mathematical advantage. In particular,

the two parameters of the model are separable, and the "best" parameter A is easy to obtain if B

is fixed. As a result, instead of a two-dimensional table, only a one-dimensional table with B as

parameter is needed for our model fitting, as seen soon.
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Observethat in equation (8), parameter A of the exponential model only acts as a scale factor.

Therefore, we can separate the effects of A and B by expressing cr°(0_) as A cr_°(Ok) where o°(0,)

is still calculated from (8) but instead of using the model in (7), the normalized model

a°(O) - exp(-e / B)

is used in the expression.

With the above notations, the problem can be restated as

(10)

min o _ = min,,ro-a+°, 2 (11)
A,B A,B

= rain ( rain tto,.°.- o._tt2)
B A

= min ( rain I!o,° - A o'..°ll2 )
B A

The significance of (11) is that the two-dimensional search has been translated to two one-

dimensional searches. This makes it suitable to use only a one-dimensional lookup table to store

o-_°, which is only the function of the model parameter B, and to estimate A directly in the model-

fitting process. Therefore we not only drastically reduce the storage requirement of the lookup

table method by a factor Na, the size of quantized A, but also eliminate the quantization error of

A because now it is estimated over a continuous base.

4.4 Generation of lookup table

Each element of the lookup table consists of a particular value of B, say Bi out of the set of

quantized {B, }, and two corresponding vectors, cr..°iand El.

The vector cr°i is defined as

o°_ = (,7_°Aa_),-.. , o2Aa,,))' (12)

where o'°_(O,) is calculated from (8) using the normalized model in (10) with parameter Bi.
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Ei is the error vector whose the k th element, ei(Ok), is simply the difference between O'°i(Ok) and

exp(-Ok/Bi), the value of the model at Ok, both in dB. This error vector will be used for the error

correction.

How to choose the quantized parameters set {Bi , i = 1,2 .... ,M} depends on the allowable

memory size, the acceptable time spent on the calculation, and the tolerable error due to

quantization on B. The quantization errors can be assessed by observing the difference between

the components of two vecto_ ¢__0/and cr_°,m, corresponding to two adjacent quantized values, 8i

and B j+ I . The set of {Oi, i= 1.. n} is chosen to include all possible incidence angles, in

consistence with the designed experiment.

For each quantized Bi, aOi(ok) is found over the chosen incidence angles {0j} by numerically

solving the integral (8). Besides the normalized exponential model (10) with specified B i, the

normalized two-way antenna pattern g2(. ) must be specified in order to carry out the integral,

which could be a fitted function of measured antenna pattern or just measured antenna data if the

measurements were made over fine-enough angles. For the latter case, interpolation might be

needed in the calculation. The chosen integral area A should be large enough so that the

contribution to the integral from the outside of the area can be ignored. Note that only the

relative distance R(O,,, ¢,,)/R(OD appears in (8), so the real height of the antenna position is

irrelevant and any height can be assumed for the calculation.

A Pascal program for generating a required lookup table is listed in the Appendix. The

integration program used was taken from [8] and slightly modified for two-dimensional

integration. In the program, the two-way antenna gain was assumed to be a Gaussian pattern.

Generating the lookup table is a time-consumed task. As a matter of fact, the integration (8)

needs to be carried out Ne x Na times where No and NN are, respectively, the sizes of quantized

0 and B. However, the table has been made once and for all as long as the same antenna is used.

The model fitting costs little time once the table has been made.

4.5 Parameter estimation

The parameter estimation procedure is straightforward once the lookup table is made. Fig.4

diagrammatically illustrates the procedure. The squared distance between o. ° and o ° is plotted in

the form of equi-distance contours with parameters A and B as independent variables. Parameter

12
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B has been quantized into a set of discrete values {Bi, i= 1,...,M} and a lookup table has been

made whose ith element is a vector a_°i given in (12). For each discrete Bi (equivalently, a_°i,

the element of the lookup table), the local minimum distance D_ is calculated with the fixed Bi

and the free parameter A. By comparing {D/2}, the model parameters are declared as the ones

that yield the smaLlest distance D" among {D2}. As seen from the figure, quantization on

parameter B results in some error in locating the global minimum. The error can be made as

small as we wish by reducing the quantization step with the price of a larger table and longer

searching time. Also two-dimensional interpolation techniques can be used to reduce the error

further. The step-by-step procedures for estimating the model parameters are as follows:

Step 1

Step 2

Calculate o"° vector from measured data using (3).

o
For each element of the table, a_i vector, find optimum Ai, which minimizes the

o = A o according to thedistance between the measured vector a. ° and o'+_ o'2_,

following equation

K

I ._1(aO(oi)_aO(oi)) (dB) (13)Ai= _

which can be proven easily,asshown infollowinganalysis.

For a fixed Bi, we want to find the optimum parameter Ai that minimizes the

squared distance

0/2 = llo"°- Aio'°3ll:z

A

Notice that in the above equation, o'% are in dB as mentioned earlier, i.e.,

o(Aa°_),_ = (A)_ + (a:._)_

(14)

SO

0,_ = rain ,a.°CdB)- A(d_) - a_°Ad_)l:
A

(15)

13



K

=rainE,Co',°Coj)-A-u°_(O_))_ (_)
/t j,,l

Differentiate (15) and let the result equal zero, we get (13).

Step 3 Compare {D/2 } to find the smallest one

D" m rain(D_} (16)
i

and the corresponding parameters A* and B', which yield D', are the fitted

parameters of the measured vector tr° based on quantized parameters {Bi}. The

error vector corresponding to B" can be read out from the table for error correction.

5. Estimation of Backscattering Coefficient o °

Generally, the angle response of o"° can be divided into two regions (see (7)), by either inspecting

{cr°(0i)} or trying different segmentations and finding a suitable division that yields minimum

combined D'. After the model parameters for each region are determined, the corresponding

error vectors can be used to correct the narrow-beam approximation errors on the measured data

I cr°(e_)}. However, the correction at those incidence angles near the intersection of the two fitted

model segments might not be as accurate as for other angles. A better procedure is to use the

combined model to directly calculate the error vector. With the fitted parameters, the combined

model is

j"A_exp(-O/B7)
:.c(o)-- /B;)

0 < e < 8o (17)
00<8<#/2

The combined model is again used in (8) to calculate the error of the narrow-beam

approximation, E( ek )

14



E(eD = _°Aek)-_°(eD (dB) (18)

where o°(0k) comes from (8) using the combined model (17). Because E(Ok) reflects the effect

of the illumination integral (1), we can expect a better estimate of tr° to be

d°(Ok)= aO(ok)+ E(oD (dB) (19)

We call d ° as corrected o ° because unlike tr° (uncorrected), a correction factor, E(O), has been

added to overcome the error of the narrow-beam approximation.

6. Results

The proposed procedure has been tested on different types of data, and in this section two

examples are given to show the performance of the procedure. In the first example, the procedure

was used on data obtained by sampling the curves labeled "measured o °'' in Fig.2 from 0 ° to 50 °

with steps of 2.5 °. The corrected a°s ({d°(Ok)}), the measured o'°s ({ o'°(0_)}), as well as the true

o°s, are plotted in Fig.5. The figure dearly shows the improvement in the estimation of o ° using

the procedure described. Notice that the two-segment exponential model is not a suitable model

for the smooth surface o"° curve, as shown in the Fig.2. The remarkable improvement justifies

the earlier statement that the procedure is not model sensitive.

Another example uses true experimental data that were collected by two different systems. 3 The

measured o"° (o °) of both systems and the corrected o"° (d °) for the wide-beam antenna data are

plotted in Fig.6. No correction was made on the narrow-beam antenna data because, except at

. Two radar systems were used to record data simultaneously during the CRREL 1989 experiment. One radarwas
a FM-CW system with an antenna of 3° beamwidth, and another was a step-fa_quency system with an antenna
of 15"beamwidth.
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normal incidence, the narrow-beam approximation errors were very small and negligible. The

figure shows that, as expected, the wide-beam antenna system only gives an erroneous estimate

of cr° for small incidence angles if the narrow-beam approximation is used to retrieve tr°. On the

other hand, data from both systems show good consistency after the correction was made on the

wide-beam data.

7. Summary

In this report, we have presented a correction procedure for the estimation of cr° for data

collected by a wide-beam system. The procedure estimates the error incurred by the narrow-

beam approximation and provides a more accurate estimate of tr ° by correcting the error in some

degree. An exponential model is used in the procedure, and a combined approach of a one-

dimensional lookup table plus one-dimensional optimization is proposed for model fitting. The

procedure is shown to provide significant improvement on the estimate of o"° and to be

insensitive to the model assumption of cr°.
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9. Appendix Pascal Program For Generating Lookup Table

PROGRAM BEAMINT;

CONST

PI--3.1415926536;

HEIGHT = I;

I-I2--I; {H2 =H*H }

D_R - 0.0174532925;

B_TH 3DB = 0.2617994 ;{ 15DEGREES 5 GHZ }

{ BEAMWIDTH_3DB = 0.0994838 ; 5.7DEGREES 9.6GI-IZ}

{ BEAM'WIDTH_3DB = 0.0877028 ; 5.025DEGREES 13.6GHZ }

S_THETA --2.5; {DEGREE }

TYPE

GLNARRAY =_ARRAY[I_ 10] OF DOUBLE;

VAR

THETA J-IALFB EAM_INT, CENTER_Y, LONG_AXIS ,SHORT_AXIS ,X 1 ,Y 1 ,Y2,Y0 :DOUBLE;

RHOl,RHO2,PFIII,SINT, SI CIRCLE,S2_CIRCLE_R,R0,X_Y : DOUBLE;

R_THETA,PAR,S_PAR,R4,SIGMA,HALFBEAM_E, FF, A/LL : DOUBLE;

CIRCLEj.I,JJ : INTEGER;

FDAT : TEXT;

FUNCTION DB(X:DOUBLE):DOUBLE;

BEGIN

DB := 10*LN(X)/LN(10)

END;

FUNCTION TAN(X:DOUBLE):DOUBLE;
VAR

C : DOUBLE;

BEGIN

C :,, COS(X);

IF (C = 0) THEN TAN :n IE36

ELSE TAN := SIN(X)/C

END;

{arccosfunction}

FUNCTION ACOS(C:DOUBLE):DOUBLE;
VAR

S,AC : DOUBLE;
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BEGIN

IF (ABS(C)>I) THEN BEGIN

IF (C>0) THEN C:= I
ELSE C:=-I

END;

IF (C=O) THEN

AC := PI/2
ELSE

BEGIN

S := SQRT(I.0-SQR(C));

AC := ARCTAN(S/C);
IF (AC < 0) THEN AC := PI+AC

END;
ACOS := AC

END;

[antennagain function }

FUNCTION ANTENNA_PATIER_(PHI : DOUBLE):DOUBLE;
CONST

C = 1.6651092;

BEGIN

ANTENNA_PATTER_ := EXP(-SQR(C*PHI/BEAMWIDTH_BDB))
END;

{ sigma0 function : exponential model }

FUNCTION SIGMA0(PH],PAR : DOUBLE):DOUBLE ;
BEGIN

SIGMA0 := EXP(-PHI/PAR)
END;

{ find angle between theantennalook directionand ground a pixel}

FUNCTION ANGLE(RHO,PHI,R,Y0,R0 : DOUBLE):DOUBLE;
VAR

CPHI :DOUBLE;

BEGIN

CPH] := (RHO'COS(PI-I])*Y0+H2)/(R*R0);

ANGLE := ACOS(_)

END;

{ ANTENNA GAIN function :g**2 }

FUNCTION FUNC(PHI,I_IO:DOUBLE):DOUBLE;
VAR

19

=



ANG :DOUBLE;

BEGIN

ANG := ANGLE(RHO_HLR,Y0_R0);
FUNC :ffiANTElqN A_PA_FERN(ANG);

END;

{ find parameters of illumination ellipse }

PROCEDURE ELLIPSE(THETA,HALFBEAM_INT : DOUBLE ;

VAR CENTER_Y_LONG_AXIS,SHORT_AXIS : DOUBLE);

VAR

A,B,C,D,E : DOUBLE;

BEGIN

A := SQR(TAN(HALFBEAM_INT));

B :ffiSQR(COS(THETA))-A*SQR(SIN(THETA));
C :ffi HEIGHT*(I+A)*SIN(2*THETA);

D := SQR(HEIGHT)*(A*SQR(COS(THETA))-SQR(SIN(THETA)));

CENTER_Y := C./(2*B);

E :- D+SQR(C)/(4*B);

LONG_AXIS := SQRT(E/B);

SHORT_AXIS := SQRT(E)

END;

{ find angle of a eUipse given range in polar coordinate system }

FUNCTION PHI_LIMIT(CENTER_Y, LONG_AXIS,SHORT_AXIS,RHO : DOUBLE):DOUBLE;

CONST

NOT_ZERO = 1E-30;

VAR

A,B,C,D,Y_COF, X COFI.IMIT :DOUBLE;

BEGIN

Y_COF := SQR(LONG AXIS);

X_COF :ffiSQR(SHORT_AXIS);

A :ffiSQR(RHO)*(Y COF-X_COF);
B := 2*X_COF*CENTER_Y*RI'IO;

C :---X COF*Y_COF-Y COF*SQR(RHO)-X_COF*SQR(CENTER_Y);

D :ffi (-B+SQRT(SQR(B)-4*A*C))/(2*A);

LIMIT :--ACOS(D);

IF (LIMIT = PHIl) THEN LIMIT :ffiPHIl + NOT_ZERO;

PHI_LIMIT := LIMIT;

END;

{polynomial extrapolation function }

PROCEDURE POLINT(XA,YA : GLNARRAY; N : INTEGER ;X : DOUBLE ; VARY, DY :DOUBLE);

VAR
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NS,Mj : INTEGER;

W,HP, HO,DIFT, DIF, DEN : DOUBLE;

C,D : GLNARRAY;

BEGIN

NS:=d;

DIF:=ABS(X-XA[1]);
FOR I:=1 TO N DO

BEGIN

DIFr:=ABS(X-XA[I]);

n_(DIFr < DIF) THEN

BEGIN

NS:-'-I;

DIF:=DIFT;

END;

C[I]:=YA[I];

D[II:=YAfII,

END;

Y:--YA[NS];
NS:--NS-I;
FOR M:-I TO N-I DO

BEGIN

FOR I:=l TO N-M DO

BEGIN

HO:=XA[I]-X;

HP:=XAI'I+M]-X;

W:-'--C[I+I]-DIll;

DEN:-HO-I'IP;

n:fDEN = 0)THEN

II:= 1;

DEN:=W/DEN;

D[I]:=HP*DEN;

C[I]:=HO*DEN;
END;

IF (2*NS < N-M)THEN

DY:=C[NS+I]
ELSE

BEGIN

DY:=D[NS];
NS:=NS- 1;

END;

Y:-Y+DY;
END

END;

{ integral along phi direction with fixed range in polar coordinate system }

PROCEDURE TRAPZD_PI-I/(YJt,B : DOUBLE; VAR S : DOUBLE;
N : INTEGER; VAR GLIT : INTEGER);

VAR
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J : INTEGER;

X,TNM,SUM,DEL : DOUBLE;

BEGIN

IF (N = I) THEN
BEGIN

S:=0.5*(B-A)*(F C(A,Y)+FUNC(B,Y));
GUT:--l;

END

ELSE

BEGIN

TNM:=GLIT;

DEL:=(B-A)/TNM;

X:=A+O.5 *DEL;

SUM:=O.O;
FOR J:=lTO GL1T DO

BEGIN

SUM:---SUM+FUNC(X,Y);

X:=X+DEL;

END;

S:=O.5*(S+(B-A)*SUM/TNM);

GLIT:=2*GLIT;
END

END;

[ integral along phi direction with fixed range i-polar coordinate system )

FUNCTION QROIVIB_PHI(Y,A_B : DOUBLE):DOUBLE;
LABEL 99;
CONST

EPS = 1.0E-6;

_vfAX = 16;

/MAXP = 17;

K=4;

VAR

I,J,GLIT_PHI : INTEGER;

DSS,SS : DOUBLE;

H,S : ARRAY[I...IMAXP] OF DOUBLE;

C,D : GLNARRAY;

BEGIN

H[I]:=I.0;
FOR .l:=l TO ;MAX DO

BEGIN

TRAPZD_PHI(YJk _B,S[Y]J,GLIT_PHI);

IF (J >= K) THEN
BEGIN

FOR I := l TO K DO

BEGIN
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C[I] := H[J-K+I];
D[I] := S[J-K+I]

END;

POLINT(C,D,K,0.0,SS,DSS);

IF (ABS(DSS) < (EPS*ABS(SS))) THEN GOTO 99;

END;

S[J+l]:--Sff];

H[J+l]:=0.25*H[J];

END;

11 := 2;

99: QROMB_PHI :-SS;

END;

{integralalongrangedirectionon a funclionwhose pointsarephi direction

integralsinpolarcoordinatesystem }

PROCEDURE TRAPZD_RHO(A,B :DOUBLE; VAR S :DOUBLE;

N :INTEGER; VAR GUT :INTEGER; CIRCLE :INTEGER);

VAR

J :INTEGER;

RHO,TNM,SUM,DEL,PHI2_A,PHI2_B,PHI2_RHO : DOUBLE;

BEGIN

IF (N = 1) THEN
BEGIN

IF (CIRCLE <> 0 ) THEN { integral on a semi_circle }

BEGIN { CIRCLE = 2 for left semi_circle }

PHI2_A := CI:RCLE*PI/'2; { CIRCLE = 1 for right semi_circle }
PHI2_B := PHI2_A { integral limits are PI/2 to PI or 0 to PI/2 }

END

ELSE

BEGIN

PHI2_A := PHI_LIMIT(CENTER_Y, LONG_AXIS,SHORT_AXISA);

PHI2_B := PHI_LIMIT(CENTER_YL,ONG_AXIS,SHORT_AXIS,B)

END;

R := SQRT(SQR(A)+SQR(HEIGHT));

R4 := SQR(SQR(R));

SIGMA := SIGMA0(ARCTAN(A/HEIGHT),PAR);

S:=A*QROMB_PHI(A,PHII j_HI2_A)*SIGMA/R4;

R := SQRT(SQR(B)+SQR(HEIGHT));

R4 := SQR(SQR(R));
SIGMA := SIGMA0(ARCTAN(B/HEIGHT),PAR);

S :=S+B*QROMB_PHI(B,PHII,PHI2 B)*SIGMA/R4;

S:=0.5*(B-A)*S;

GUT:--I;

END

ELSE

BEGIN

TNM:=GLIT;

DEL:=(B-A)ITNM;
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RHO:--A+0.5*DEL;

SUM:=0.0;
FOR J:--I TO GLIT DO

BEGIN

IF (CIRCLE <> 0 ) THEN
BEGIN

PHI2_RHO :--CIRCLE*PI/2;
END

ELSE

BEGIN { integral limit on ellipse edge }

PHI2_RHO := PHI_LIMIT(CENTER_Y, LONG_AXIS,SHORT_AXIS,RHO);
END;

R :--SQRT(SQR(RHO)+SQR(HEIGHT)); { range }

R4 := SQR(SQR(R));

SIGMA := SIGMA0(ARCTAN(RHO/HEIGHT),PAR); { sigma0 }

SUM:--SUM+RHO *QROMB_PHI(R.HO,PHI I,PHI2..RHO)* SIGMA/R4;
RHO:--RHO+DEL;

END;

S:--0.5*(S+(B-A)*S_;

GLIT:=2*GLIT;
END

END;

PROCEDURE QROMB_RHO(A,B : DOUBLE; VAR SS : DOUBLE; CIRCLE :INTEGER);
LABEL 99;
CONST

EPS = 1.0E-5;

J'MAX = 16;

JMAXP = 17;

K-4;

VAR

Ij,GLrr_RHO : INTEGER;

DSS : DOUBLE;

H,S : ARRAY[I..JMAXP] OF DOUBLE;

C,D : GLNARRAY;

BEGIN

H[I]:=I.0;

FOR J:=lTO JMAX DO

BEGIN

TRAPZD_RHO(A,B ,S [YJj ,GL1T RHO,CIRCI_);

IF (J>= K) THEN

BEGIN

FOR I:-1 TO K DO

BEGIN

C[I]:=H[J-K+I];

D[I] :--S[J-K+I]

END;
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POLINT(CJg,K,0.0,SS,DSS);

IF (ABS(DSS) < (EPS*ABS(SS))) THEN GOTO 99;,

END;

S[J+I]:=S[J];

H[J+I]:=0.25*H[J];
END;

II := 3;

99:;

END;

BEGIN

ASSIGN(FDAT, 'G5 S.DAT');

HALFBEAM_INT := 2*BEAMWlDTH_3DB; { integral beam }
HALFBEAM_EFF :ffi1.2*BEAMWIDTH_3DB/2; { effective beam : illumination area }

S_PAR := 0.05*D R; { exponential parameter step }

PAR := 0.8*D_R; { initial value of exponential para. }
WHILE (PAR <ffi (2.5*D_R)) DO

BEGIN

APPENDfFDAT);
WRITELN(FDAT);

WR1TELN(FDAT, PAR/D_R);

CLOSE(FDAT);

THETA := 0; { initial inddenc¢ angle }

WHILE (THETA < 51 ) DO
BEGIN

H :ffi0; { H ffi0 indicate finishing integral correctly }
R_THETA := TI-IETA*D_R;

R0 := I-IF.IGHT/COS(R THETA);

Y0 := HEIGHT*TAN(R_TI-IETA);

ELLIPSE(R_THETA,HALFB EAM INT, CENTER_Y, LONG_AXIS ,SHORT_AX_S);
SI_CIRCLE := O;

S2_CIRCLE :ffi0;

SINT :ffiO;

CIRCLE := 0;

PHIl := 0;

IF (CENTER_Y < LONG_AXIS) THEN
BEGIN

{ integral on left semi_circle }
CIRCLE := 2;

PH]I := PI/'2; { low integral limit for angle }

XI := SHORT_AXIS*SQRT(I-SQR(CENTER_Y/LONG_AXIS));

YI := LONG_AXIS-CENTER_Y;

IF (X1 > YI) THEN X Y :- XI { up integral limit for range }
ELSE X_Y := YI;

QROMB_RHO(0.0,X_Y, S2_CIRCLE,CIRCLE);

{ integral on right semi_cirde }
CIRCLE := 1;

PHIl := 0; { low integral limit for angle }

QROMB_RHO(0.0,Xl,S I_CIRCLE,CIRCLE);
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CIRCLE:=0;
RHOI := XI;

RHO2 := CENTER_Y+LONG_AX/S

END

ELSE

BEGIN

RHO 1 := CENTER_Y-LONG_AXIS;

RHO2 :=CENTER_Y+LONG_AXIS

END;

IF (RHO2 > RHOI) THEN

{ low integral limit for range }

{ up integral limit for range }

{ low integral limit for range }

{ up integral limit for range }

{ integralon ellipse }
QROMB_RHO(RHO I,RHO2,SINT, ClRCLE);

SINT := SINT+S I_CIRCLE+$2 CIRCLE;

ELLIPSE(R THETA,HALFB EAM EFF, CF./qTER_Y, LONG_AXI$,$HORT_AXlS);

{ calculate illuminated area }

AILL := PI*LONG_AXlS*SHORT_AXlS;

SINT := 2*SINT*SQR(SQR(R0))/AILL;

WR1TELN('PAR,THETA,SIGMA0,SS - ',PAR: 10:5,THE_A: 10:5,SINT: 10:7,
SINT/SI GMA0(R_THETA,PAR): 10:7);

IF (II ,:, 0) THEN
WR/TELN('ERROR IN ',PAR/D R:10:5,' wrrH ',II);

APPEND(FDAT);

WRITELN(FDAT, DB (SINT): 10:6,DB (SINT/SIGMA0(R_THETA,PAR)): 10:6);

CLOSE(FDAT);
FOR JJ :- 1 TO 5 DO

WRITE_;

THEWA := THETA + S_THETA

END;

PAR := PAR+S_PAR

END

END.
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